Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(7): e10240, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37424939

RESUMO

Studying wildlife space use in human-modified environments contributes to characterize wildlife-human interactions to assess potential risks of zoonotic-pathogens transmission, and to pinpoint conservation issues. In central African rainforests with human dwelling and activities, we conducted a telemetry study on a group of males of Hypsignathus monstrosus, a lek-mating fruit bat identified as a potential maintenance host for Ebola virus. During a lekking season in 2020, we investigated the foraging-habitat selection and the individual nighttime space use during both mating and foraging activities close to villages and their surrounding agricultural landscape. At night, marked individuals strongly selected agricultural lands and more generally areas near watercourses to forage, where they spent more time compared to forest ones. Furthermore, the probability and duration of the presence of bats in the lek during nighttime decreased with the distance to their roost site but remained relatively high within a 10 km radius. Individuals adjusted foraging behaviors according to mating activity by reducing both the overall time spent in foraging areas and the number of forest areas used to forage when they spent more time in the lek. Finally, the probability of a bat revisiting a foraging area in the following 48 hours increased with the previous time spent in that foraging area. These behaviors occurring close to or in human-modified habitats can trigger direct and indirect bat-human contacts, which could thus facilitate pathogen transmission such as Ebola virus.

2.
Ecology ; 104(9): e4134, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37386731

RESUMO

Habitat selection studies contrast actual space use with the expected use under the null hypothesis of no selection (hereafter neutral use). Neutral use is most often equated to the relative frequencies with which environmental features occur. This generates a considerable bias when studying habitat selection by foragers that perform numerous trips back and forth to a central place (CP). Indeed, the increased space use close to the CP with respect to distant places reflects a mechanical effect, rather than a true selection for the closest habitats. Yet, correctly estimating habitat selection by CP foragers is of paramount importance for a better understanding of their ecology and to properly plan conservation actions. We show that including the distance to the CP as a covariate in unconditional Resource Selection Functions, as applied in several studies, is ineffective to correct for the bias. This bias can be eliminated only by contrasting the actual use to an appropriate neutral use that considers the CP forager behavior. We also show that the need to specify an appropriate neutral use overall distribution can be bypassed by relying on a conditional approach, where the neutral use is assessed locally regardless of the distance to the CP.


Assuntos
Ecologia , Ecossistema , Comportamento Alimentar
3.
Ecol Appl ; 32(7): e2640, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35443100

RESUMO

Animals perceive human activities as risky and generally respond with fear-induced proactive behaviors to buffer the circadian patterns of lethal and nonlethal disturbances, such as diel migrations (DMs) between risky places during safe nighttime and safer places during risky daytime. However, such responses potentially incur costs through movement or reduced foraging time, so individuals should adjust their tolerance when human activities are harmless, through habituation. Yet this is a challenging cognitive task when lethal and nonlethal risks co-occur, forming complex landscapes of fear. The consequences of this human-induced complexity have, however, rarely been assessed. We studied the individual DM dynamics of chamois (Rupicapra rupicapra rupicapra), 89 GPS-tracked individual-years, from/to trails in the French Alps in areas with co-occurring lethal (hunting) and nonlethal (hiking and skiing) disturbances, with different intensities across seasons. We developed a conceptual framework relying on the risk-disturbance hypothesis and habituation to predict tolerance adjustments of chamois under various disturbance contexts and across contrasted seasonal periods. Based on spatial and statistical analyses combining periodograms and multinomial logistic models, we found that DM in relation to distance to a trail was a consistent response by chamois (~85% of individuals) to avoid human disturbance during daytime, especially during the hiking and hunting periods. Such behavior revealed a low tolerance of most chamois to human activities, although there was considerable interindividual heterogeneity in DM. Interestingly, there was an increased tolerance among the most disturbed diel migrants, potentially through habituation, with chamois performing shorter DMs in areas highly disturbed by hikers. Crucially, chamois that were most human-habituated during the hiking period remained more tolerant in the subsequent harvesting period, which could increase their risk of being harvested. In contrast, individuals less tolerant to hiking performed longer DMs when hunting risk increased, and compared to hiking, hunting exacerbated the threshold distance to trails triggering DMs. No carryover effect of hunting beyond the hunting period was observed. In conclusion, complex human-induced landscapes of fear with co-occurring disturbances by nature-based tourism and hunting may shape unexpected patterns of tolerance to human activities, whereby animal tolerance could become potentially deleterious for individual survival.


Assuntos
Rupicapra , Animais , Medo , Herbivoria , Atividades Humanas , Humanos , Estações do Ano
4.
Commun Biol ; 5(1): 208, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246607

RESUMO

Fear effects of predators on prey distributions are seldom considered in marine environments, especially over large spatial scales and in conservation contexts. To fill these major gaps, we tested the Seascape of Fear Hypothesis in the Benguela marine ecosystem off South Africa. Using electronic tracking data, we showed that Cape gannets and their predator, the Cape fur seal, co-occurred in daytime and competed with fisheries within coastal areas. At night, gannets are particularly vulnerable to seals, and 28% of the birds returned to the safety of their breeding colony. The remaining 72% slept at the sea surface, but shifted to offshore areas with lower seal attendance, reducing predation risk by 25%. Overall, our integrative study demonstrates how fear and competition shape the seascape of threatened Cape gannets within a marine environment perturbed by climate change and overfishing. Such knowledge has strong implications for the design of marine protected areas.


Assuntos
Pesqueiros , Focas Verdadeiras , Animais , Aves , Conservação dos Recursos Naturais , Ecossistema , Medo
5.
Glob Chang Biol ; 27(7): 1457-1469, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33347684

RESUMO

We explored the implications of reaching the Paris Agreement Objective of limiting global warming to <2°C for the future winter distribution of the North Atlantic seabird community. We predicted and quantified current and future winter habitats of five North Atlantic Ocean seabird species (Alle alle, Fratercula arctica, Uria aalge, Uria lomvia and Rissa tridactyla) using tracking data for ~1500 individuals through resource selection functions based on mechanistic modeling of seabird energy requirements, and a dynamic bioclimate envelope model of seabird prey. Future winter distributions were predicted to shift with climate change, especially when global warming exceed 2°C under a "no mitigation" scenario, modifying seabird wintering hotspots in the North Atlantic Ocean. Our findings suggest that meeting Paris agreement objectives will limit changes in seabird selected habitat location and size in the North Atlantic Ocean during the 21st century. We thereby provide key information for the design of adaptive marine-protected areas in a changing ocean.


Assuntos
Mudança Climática , Ecossistema , Animais , Oceano Atlântico , Humanos , Paris , Estações do Ano
6.
PLoS One ; 14(2): e0210328, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30726223

RESUMO

Fisheries compete with seabirds for vanishing marine resources, but also produce fishery waste consumed by seabirds. Marine birds may therefore avoid or seek fishing vessels, and have evolved complex, plastic behavioural responses to vessel presence. Understanding these responses is essential to the conservation of a globally declining seabird community. We studied Cape gannets (Morus capensis), which compete with fisheries for reduced sardine (Sardinops sagax) resources in the Benguela upwelling region off South Africa. Using bird-borne GPS trackers coupled with newly-developed ship-radar detectors we show that foraging gannets seldom attended fishing vessels. Rather, they switched from eating scarce sardines or energetically-poor fishery waste to targeting locally abundant saury (Scomberesox saurus). This pelagic fish is brought into the seascape by warm water influx, and is not commercially exploited by fisheries. Cape gannets thereby show dietary plasticity, allowing them to maintain adult body condition and chick growth rates. This diet switch is a strong indicator that Cape gannets forage in an ecologically perturbed marine environment.


Assuntos
Comportamento Alimentar/fisiologia , Pesqueiros , Peixes/fisiologia , Radar , Animais
7.
J Anim Ecol ; 88(1): 92-101, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30280384

RESUMO

Diel migrations (DM; back and forth diel movements along an ecological gradient) undertaken by prey to avoid predators during the day have been demonstrated in many taxa in aquatic ecosystems. In terrestrial ecosystems, prey often shift between various vegetation types whose cover determine their vulnerability (i.e., likelihood of being killed when attacked). We conceptualized that in terrestrial ecosystems, DM could also occur and that the contribution of DM and shifts in vegetation cover use in reducing predation risk should depend upon the predator behaviour and the correlation between encounter risk and vulnerability across vegetation types. We further hypothesized that when the predator distribution is predictable, terrestrial prey could have evolved DM strategies taking them away from the predator when it is active or efficient. We investigated whether plains zebras Equus quagga perform DM in Hwange National Park (Zimbabwe). There, zebras can forage in large patches of open grasslands located near waterholes where they can also easily detect predators. However, they are there at high risk of encountering their main predator, lions Panthera leo, especially at night. We found out that zebras employ a DM anti-predator strategy. Zebras forage near waterholes during the day but move away from them at sunset, when lions become active. We demonstrated that this DM, occurring over a few kilometres, dramatically reduces their night-time risk of encountering lions, which generally remain close to waterholes. Zebra changes in night-time selection for vegetation cover types reduced their risk of encountering lions much less. This may arise from a trade-off between encounter risk and vulnerability across vegetation types, with zebras favouring low vulnerability once DM has reduced encounter risk. In summary, here we (a) quantify, in a terrestrial system, the effect of a predator-induced DM on the likelihood of encountering a predator and (b) distinguish the effects of the DM on encounter risk from those related to day/night changes in selection for vegetation types. We discuss how prey partition their risk between encounter risk and habitat-driven vulnerability and why it is likely critical to understand the emergence of anti-predator behavioural strategies.


Assuntos
Leões , Animais , Ecossistema , Equidae , Comportamento Predatório , Zimbábue
8.
Ecol Lett ; 21(7): 1043-1054, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29659122

RESUMO

Spatio-temporally stable prey distributions coupled with individual foraging site fidelity are predicted to favour individual resource specialisation. Conversely, predators coping with dynamic prey distributions should diversify their individual diet and/or shift foraging areas to increase net intake. We studied individual specialisation in Scopoli's shearwaters (Calonectris diomedea) from the highly dynamic Western Mediterranean, using daily prey distributions together with resource selection, site fidelity and trophic-level analyses. As hypothesised, we found dietary diversification, low foraging site fidelity and almost no individual specialisation in resource selection. Crucially, shearwaters switched daily foraging tactics, selecting areas with contrasting prey of varying trophic levels. Overall, information use and plastic resource selection of individuals with reduced short-term foraging site fidelity allow predators to overcome prey field lability. Our study is an essential step towards a better understanding of individual responses to enhanced environmental stochasticity driven by global changes, and of pathways favouring population persistence.


Assuntos
Aves , Dieta , Animais , Ecossistema , Comportamento Predatório
9.
Proc Biol Sci ; 282(1812): 20150973, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26224710

RESUMO

Trophic interactions in multiprey systems can be largely determined by prey distributions. Yet, classic predator-prey models assume spatially homogeneous interactions between predators and prey. We developed a spatially informed theory that predicts how habitat heterogeneity alters the landscape-scale distribution of mortality risk of prey from predation, and hence the nature of predator interactions in multiprey systems. The theoretical model is a spatially explicit, multiprey functional response in which species-specific advection-diffusion models account for the response of individual prey to habitat edges. The model demonstrates that distinct responses of alternative prey species can alter the consequences of conspecific aggregation, from increasing safety to increasing predation risk. Observations of threatened boreal caribou, moose and grey wolf interacting over 378 181 km(2) of human-managed boreal forest support this principle. This empirically supported theory demonstrates how distinct responses of apparent competitors to landscape heterogeneity, including to human disturbances, can reverse density dependence in fitness correlates.


Assuntos
Cervos/fisiologia , Cadeia Alimentar , Comportamento Predatório , Lobos/fisiologia , Animais , Canadá , Modelos Biológicos , Rena/fisiologia
10.
Am Nat ; 181(6): 827-36, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23669544

RESUMO

The assessment of disturbance effects on wildlife and resulting mitigation efforts are founded on edge-effect theory. According to the classical view, the abundance of animals affected by human disturbance should increase monotonically with distance from disturbed areas to reach a maximum at remote locations. Here we show that distance-dependent movement taxis can skew abundance distributions toward disturbed areas. We develop an advection-diffusion model based on basic movement behavior commonly observed in animal populations and parameterize the model from observations on radio-collared caribou in a boreal ecosystem. The model predicts maximum abundance at 3.7 km from cutovers and roads. Consistently, aerial surveys conducted over 161,920 km(2) showed that the relative probability of caribou occurrence displays nonmonotonic changes with the distance to anthropogenic features, with a peak occurring at 4.5 km away from these features. This aggregation near disturbed areas thus provides the predators of this top-down-controlled, threatened herbivore species with specific locations to concentrate their search. The edge-effect theory developed here thus predicts that human activities should alter animal distribution and food web properties differently than anticipated from the current paradigm. Consideration of such nonmonotonic response to habitat edges may become essential to successful wildlife conservation.


Assuntos
Distribuição Animal , Ecossistema , Modelos Biológicos , Rena/psicologia , Animais , Feminino , Sistemas de Informação Geográfica , Humanos , Modelos Estatísticos , Quebeque , Árvores
11.
J Anim Ecol ; 82(5): 1062-71, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23701257

RESUMO

1. Habitat selection strategies translate into movement tactics, which reckon with the predator-prey spatial game. Strategic habitat selection analysis can therefore illuminate behavioural games. Cover types at potential encounter sites (i.e. intersections between movement paths of predator and prey) can be compared with cover types available (i) within the area of home-range-overlap (HRO) between predator and prey; and (ii) along the path (MP) of each species. Unlike the HRO scale, cover-type availability at MP scale differs between interacting species due to species-specific movement decisions. Scale differences in selection could therefore inform on divergences in fitness rewarding actions between predators and prey. 2. We used this framework to evaluate the spatial game between GPS-collared wolves (Canis lupus) versus caribou (Rangifer tarandus), and wolf versus moose (Alces alces). 3. Changes in cover-type availability between HRO and MP revealed differences in how each species fine-tuned its movements to habitat features. In contrast to caribou, wolves increased their encounter rate with regenerating cuts along their paths (MP) relative to the HRO level. As a consequence, wolves were less likely to cross caribou paths in areas with higher percentage of regenerating cuts than expected based on the availability along their paths, whereas caribou had a higher risk of intersecting wolf paths by crossing these areas, relative to random expectation along their paths. Unlike for caribou, availability of mixed and deciduous areas decreased from HRO to MP level for wolves and moose. Overall, wolves displayed stronger similarities in movement decisions with moose than with caribou, thereby revealing the focus of wolves on moose. 4. Our study reveals how differences in fine-scale movement tactics between species create asymmetric relative encounter probabilities between predators and prey, given their paths. Increase in relative risk of encounter for prey and decrease for predators associated with specific cover types emerging from HRO to MP scale analysis can disclose potential weaknesses in current movement tactics involved the predator-prey game, such as caribou use of cutovers in summer-autumn. In turn, these weaknesses can inform on subsequent changes in habitat selection tactics that might arise due to evolutionary forces.


Assuntos
Comportamento Animal , Cervos/fisiologia , Comportamento Predatório , Lobos/psicologia , Animais , Canadá , Ecossistema , Locomoção , Rena/fisiologia , Estações do Ano , Árvores
12.
J Anim Ecol ; 79(3): 548-55, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20202010

RESUMO

1. Resource selection functions (RSFs) are becoming a dominant tool in habitat selection studies. RSF coefficients can be estimated with unconditional (standard) and conditional logistic regressions. While the advantage of mixed-effects models is recognized for standard logistic regression, mixed conditional logistic regression remains largely overlooked in ecological studies. 2. We demonstrate the significance of mixed conditional logistic regression for habitat selection studies. First, we use spatially explicit models to illustrate how mixed-effects RSFs can be useful in the presence of inter-individual heterogeneity in selection and when the assumption of independence from irrelevant alternatives (IIA) is violated. The IIA hypothesis states that the strength of preference for habitat type A over habitat type B does not depend on the other habitat types also available. Secondly, we demonstrate the significance of mixed-effects models to evaluate habitat selection of free-ranging bison Bison bison. 3. When movement rules were homogeneous among individuals and the IIA assumption was respected, fixed-effects RSFs adequately described habitat selection by simulated animals. In situations violating the inter-individual homogeneity and IIA assumptions, however, RSFs were best estimated with mixed-effects regressions, and fixed-effects models could even provide faulty conclusions. 4. Mixed-effects models indicate that bison did not select farmlands, but exhibited strong inter-individual variations in their response to farmlands. Less than half of the bison preferred farmlands over forests. Conversely, the fixed-effect model simply suggested an overall selection for farmlands. 5. Conditional logistic regression is recognized as a powerful approach to evaluate habitat selection when resource availability changes. This regression is increasingly used in ecological studies, but almost exclusively in the context of fixed-effects models. Fitness maximization can imply differences in trade-offs among individuals, which can yield inter-individual differences in selection and lead to departure from IIA. These situations are best modelled with mixed-effects models. Mixed-effects conditional logistic regression should become a valuable tool for ecological research.


Assuntos
Comportamento Animal/fisiologia , Ecossistema , Modelos Biológicos , Projetos de Pesquisa , Animais , Bison/fisiologia , Comportamento de Escolha , Simulação por Computador , Demografia , Modelos Logísticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...